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Sound radiation from a cylindrical duct. Part 2. 
Source modelling, nil-shielding directions, 
and the open-to-ducted transfer function 
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(Received 27 July 1995 and in revised form 19 December 1995) 

This paper analyses the sound radiated from the front face of a hard-walled circular 
cylindrical duct in a subsonic mean flow when the duct contains acoustic sources 
typical of those in a ducted-fan aeroengine. Two main results are established for 
modes of any given frequency and circumferential order. The first result is that in 
certain easily calculated directions, called here the nil-shielding directions, the sound 
radiated by ducted sources is the same as the sound radiated by the corresponding 
open sources, i.e. by unducted sources of the same distribution and strength radiating 
into free space. Thus in these special directions the duct has no noise-shielding effect. 
The second result is that, in the Kirchhoff approximation, the sound radiated by 
the open sources in the nil-shielding directions determines the sound radiated by the 
ducted sources in all directions; i.e. the sound fields radiated by open and ducted 
sources are related by an open-to-ducted transfer function. This function is such 
that the sound radiated by the ducted sources is a linear combination of certain 
diffraction functions, in which the coefficients are given by the sound radiated by the 
open sources in the nil-shielding directions. The diffraction functions do not depend 
on the sources and are here calculated explicitly in terms of Bessel functions. The 
method used in the paper is Kirchhoff’s approximation; within linear theory this gives 
the nil-shielding directions exactly, i.e. in agreement with the Wiener-Hopf solution, 
and gives the main beam of the radiated field, including the major side-lobes, to good 
accuracy. The results are relevant to the sound radiated into the forward arc by a 
ducted turbofan aeroengine. 

1. Introduction 
The aim of this paper is to describe the sound radiated from the front face of a 

circular cylindrical duct when the duct contains acoustic sources of some complexity. 
The sources are modelled in a way that is realistic for application to studies of 
the noise produced by high-speed ducted turbofan aeroengines, and calculations are 
presented for time-dependent loading sources distributed arbitrarily over the surfaces 
of rotating fan blades. In order to model sources having an arbitrary time-dependence, 
the source distribution is decomposed into a sum of terms in accordance with the 
mode-interaction theory of Tyler & Sofrin (1962). All calculations include the effect 
of a subsonic mean flow. The final result of the calculations is a description of the 
radiated sound field in terms of the distribution and strength of acoustic sources on 
the fan blades. The calculations presented are appropriate to loading sources, but the 
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method applies equally to sources of any type, for example to thickness sources or to 
quadrupole sources. 

Many aspects of this problem have been studied previously. The distinctive feature 
of the present work is that the far-field acoustic directivity patterns produced by 
ducted sources are explicitly related to the corresponding patterns which would be 
produced if the duct were absent. In aeroengine terminology, the far-field ducted- 
rotor directivities are related to the far-field open-rotor directivities. The relationship 
between the two may be expressed by means of an open-to-ducted transfer function, 
and one of the main results of the paper is an explicit expression for this transfer 
function. Since much is known about the sound radiated by rotors in free space, such 
a transfer function is of use in the harder problem of determining the sound radiated 
by rotors in ducts. The paper makes full use of the ray structure of duct modes 
described in Part 1 (Chapman 1994), and includes the effect of the mean flow on the 
mode ray angles. 

An account of ducted sources and their radiation properties is given by Goldstein 
(1976, analysis leading to equation 4.47, p. 212); less detailed accounts are given by 
Hubbard, Lansing & Runyan (1971, $4, especially the caption to figure 19, p. 329), 
and by Lansing (1970, e.g. equation 12, p. 329). These authors do not consider the 
effect of a mean flow on the radiated field, although Goldstein determines the effect of 
a mean flow on the acoustic field inside the duct. Homicz & Lordi (1975) determine 
the effect of a mean flow on the sound radiated by a single duct mode, but do not 
model the acoustic sources. Only a small amount of published work models ducted 
sources and simultaneously accounts for the effect of a mean flow on the radiated 
field; some work which does both is the large-scale numerical computation of Myers 
& Lan (1993) and Myers (1995). A survey of the duct acoustics of aeroengines is 
given by Eversman (1991). 

One result found below is that, for a given frequency and circumferential order, the 
duct has no effect on the sound radiated in certain easily determined directions; i.e. in 
these directions the amplitude and phase are what they would have been if the duct 
were absent and the source strengths were the same. These ‘nil-shielding directions’ 
are the polar mode angles of the propagating modes in the duct (Chapman 1994). 
The result is unexpected because the duct modes are diffracted by the end of the 
duct in accordance with a complicated radiation integral; one could not easily foretell 
that in certain directions the value of the radiation integral would be independent of 
the distance between the sources and the end of the duct. The result amounts to an 
existence theorem, and depends upon a far-field interlacing property of the radiation 
patterns produced by modes of different radial orders: in the mode ray direction 
of any one of these modes, the field radiated by each of the other modes has zero 
amplitude. Therefore the nil-shielding result is valid even when there are propagating 
modes of many radial orders, for the given frequency and circumferential order. 

Another result found below is that the sound field radiated in the nil-shielding 
directions by an open source determines the sound field radiated in all directions by 
a ducted source. Hence a set of diffraction functions exists, such that the following 
rule determines the effect of placing a duct around a source: (i) for each radial order 
which gives a propagating mode, determine the corresponding nil-shielding direction, 
and evaluate the field radiated in this direction by the open source; (ii) multiply 
this field value by the corresponding diffraction function; (iii) add the results. It is 
a little surprising that such a rule exists, because the relationship between the open 
and ducted directivities would at first sight be expected to depend on the radial 
distribution of the acoustic source strength. The fact that the radial distribution does 
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not enter into the rule amounts to a structure theorem for the sound radiated by 
ducted sources, and is a consequence of the radial-order far-field interlacing property 
referred to above. The rule implies the existence of an open-to-ducted transfer 
function constructed from the diffraction functions. These contain Bessel functions 
evaluated at certain functions of direction, and are calculated explicitly below. Hence 
an explicit expression is obtained for the open-to-ducted transfer function. 

A consequence of the structure theorem is that the effect of the duct is largely 
determined by the number of modes which can propagate at the given frequency and 
circumferential order. In an extreme case, where only one such mode can propagate, 
an observer in the far field of the ducted source does not ‘see’ the open-source 
directivity pattern at all, only a single diffraction function, with a coefficient equal to 
the open-source radiation field in the single nil-shielding direction, namely that for the 
single propagating mode. At the other extreme, where many modes can propagate, 
the far field of the ducted source is almost identical to that of the corresponding open 
source, and differs from it by a superposed ‘wiggle’. The reason is that in this case 
there are many nil-shielding directions, forming a dense skeleton of lines on which 
the fields radiated by the open source and the ducted source are equal. Thus the two 
directivity patterns can differ only by a wiggle, and calculation shows that the wiggle 
is of low amplitude. 

The paper is arranged as follows. In $2 the sound radiated by ducted loading 
sources is calculated by Kirchhoff’s approximation, and the coefficients of the various 
terms are expressed as source integrals taken over the surfaces of the fan blades. 
Hence the nil-shielding directions are determined. In 93 the open-to-ducted transfer 
function is constructed; in 94 the main properties of the diffraction functions are 
determined; and in $5 some possibilities for future work are noted. 

2. Radiation from a cylindrical duct 
2.1. Coordinates and notation 

The system to be investigated is sketched in figure 1, which shows part of the surface 
of a fan with B blades rotating at angular speed !2 inside a hard-walled cylindrical 
duct of circular cross-section and radius a. A point on the duct axis and close to 
the fan is taken as the origin 0 of a Cartesian coordinate system (x, y ,  z ) ,  where Ox 
points forwards out of the duct along its axis, Oy points horizontally to the left for 
an observer facing forwards, and Oz points vertically upwards. The corresponding 
cylindrical coordinates are (r ,  (p, x), where r is the distance from the duct axis and (p 
is the azimuthal angle around the duct axis, measured from the (O,x,y)-plane; and 
the corresponding spherical coordinates are (R, 8, (p), where R is the distance from 0 
and 8 is the polar angle, measured from the forward direction of the duct axis. The 
distance between 0 and the centre of the duct face is d,  and this is used as a measure 
of the distance of the fan from the front of the duct. 

A uniform stream of air is assumed to be flowing subsonically at speed U backwards 
through the duct and its exterior. Thus the coordinates just defined are wind-tunnel 
coordinates, in which the duct, the centre of the fan, and the observer are at rest, and 
the air is in motion. All the results obtained below may be converted, if required, 
to fly-by coordinates, in which the duct and the centre of the fan move forwards at 
speed U, while the observer and the air are at rest. In wind-tunnel coordinates, it is 
convenient to apply Doppler factors to the space variables, so that formulae can be 
expressed in the Prandtl-Glauert coordinates defined in $2.3. 
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FIGURE 1. Coordinates and notation. The equation of the rotating surface ABCD is 
x = d S ) ( r , 4  - at). The origin Od is at the centre of the duct face, so that the coordinates 
xd, R,,, ed satisfy Xd = x - d = & cos ed. 

Away from the sources, the acoustic pressure p satisfies the convected wave equation 

{ v2 - f (; - u & ) 2 } p  = O ,  

where t is the time and c is the speed of sound, assumed constant. Since the duct is 
hard-walled, the boundary condition satisfied by the pressure at r = a is a p / a r  = 0. 
The duct modes satisfying (2.1) are defined in 82.3. 

2.2. Source modelling 
Let us follow an infinitesimal portion of a fan blade as it rotates about the duct 
axis. The infinitesimal portion experiences an aerodynamic force which in general 
is a function of time. In accordance with the theory of Tyler & Sofrin (1962), this 
function of time may be decomposed into four parts: 

(i) A mean part independent of time. If all B blades of the fan are considered 
together, the corresponding acoustic field has period 2n/BQ in the non-rotating frame 
shown in figure 1, and consists of harmonics proportional to e-in(S2t-b), where n is any 
multiple of B. This part of the acoustic field is the ‘rotor-alone’ or ‘rotor-locked’ field, 
i.e. the acoustic field produced by the rotation about the duct axis of a steady force 
exerted on the air by the fan blades. 

(ii) A part with period 27t/Q. If all B blades are considered together, the cor- 
responding acoustic field has period 27c/BQ in the non-rotating frame, but the 
harmonics now have a more general form proportional to e-i(ndlt-m@), where m is any 
integer (the circumferential order), and n is still any multiple of B .  (The special case 
m = n reduces to case (i).) This part of the acoustic field is a ‘steady distortion’ field, 
produced by the interaction of the fan with any flow disturbance which is steady in 
the non-rotating frame. The disturbance could be produced by a stationary obstacle 
upstream of the fan, in which case the disturbance would contain an irrotational 
‘potential’ part and a rotational ‘vortical’ part; or the disturbance could be produced 
by a stationary obstacle downstream of the fan, in which case the disturbance at the 
fan would contain an irrotational part only. A typical vortical part would be the 
viscous wake produced by a thin upstream body; the ‘chopping’ of the wake by the 
fan blades produces an acoustic field. 
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(iii) A part consisting of a sum of discrete Fourier components with periods other 
than 271/52. If all B blades are considered together, the corresponding acoustic field 
has harmonics proportional to e-'{(""+"'"')'-("+"')~} in the non-rotating frame, where n 
is a multiple of B and n' is a multiple of a number B'. (Thus SZ' = 0 gives case (ii), 
and n' = 0 gives case (i).) This part of the acoustic field is an 'unsteady distortion' 
field, produced by the interaction of the fan with a flow disturbance containing B' 
equal lobes and rotating at rate 62'. The disturbance could be produced by a rotating 
obstacle upstream or downstream of the fan, for example by the potential field and 
by the wakes of an upstream rotor, or by the potential field of a downstream rotor. 
The case SZ = 0 gives the acoustic field produced by the interaction of a stator with 
a rotating flow disturbance; the field is then of the same type as (ii), but with SZ' 
instead of SZ and with n + n' instead of m, and the special case n = 0 gives a field of 
the same type as (i). 

(iv) A part consisting of a continuum of Fourier components, i.e. a Fourier integral. 
If all B blades are considered together, the corresponding acoustic field has harmonics 
proportional to e-i{(nQ-w)t-m+}, where n is a multiple of B and m is any integer. This 
broad-band field would be produced by the interaction of the fan with aperiodic 
flow disturbances, containing a continuum of frequencies o. The disturbances could 
consist of turbulence ingested from the atmosphere or generated in the duct-wall 
boundary layer, or the disturbances could consist of isolated gusts and surges in the 
mean flow. 

In what follows, all formulae are written out explicitly for case (ii), i.e. for steady 
distortion noise. Therefore the harmonics are taken proportional to e-i(nnt-m4) , where 
n is a multiple of B,  and the final expressions for the pressure contain sums over n 
and m. Thus case (i) is obtained by restricting the sum to terms with m = n, and 
cases (iii) and (iv) are obtained by extending the sum to include a sum over ni or 
an integral over o. These modifications may easily be obtained from the formulae 
below: the core of the theory emerges by examining terms proportional to e-i(not-m+). 

2.3. Duct modes 
The duct mode of harmonic order n, circumferential order m, and radial order s is 

where n and m are integers, and jh, is the sth zero of JL. Note that jhl = 0, but that 
all the other jLs are non-zero. 

Substitution of (2.2) into (2.1) gives the dispersion relation for duct modes. This 
relation is quadratic in the axial wavenumber k,, and therefore determines two 
possible values of k, for given n, m, s and Mach number M = U/c .  The values are 

where k ,  = nSZ/c is the free-space wavenumber corresponding to the frequency nSZ, 
and the bar denotes division by the Doppler factor f l  = (1 - M2)'I2, so that a = a/P.  
The analysis which follows is concerned only with propagating modes, i.e. modes for 
which k ,  is real. It is then convenient to write k ,  in terms of a mode angle GflmS lying 
in the range 0 to 71/2 and defined by 
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where Mt = aQ/c is the rotational Mach number, i.e. the Mach number of a 
hypothetical point on the duct wall rotating at angular speed SZ about the duct axis, 
and a, = M , / P .  If the radius of the duct is slightly greater than the radius of the 
fan, then Mt is slightly greater than the rotational tip Mach number of the fan. The 
most useful Doppler transformation of polar angle 8 is defined by tan8 = /?tan 8; 
hence the angle On,, corresponding to a,,, satisfies 

- 
sin On,, 

(1 - M 2  cos2 gnms)1/2 ’ 
sin&,, = 

Note that en,, differs from the angle obtained by putting M = 0 in (2.4), i.e. from 
the angle eizs defined by sing,,, = P sin 8i2, ; the angle 8i2, corresponding to On, 
satisfies 

By (2.3), the propagating modes are the modes for which jk < k,a, i.e. the modes 
for which &,,, is real. The upper sign in (2.3) corresponds to modes with their energy 
propagating forwards along the duct; the term k,x in the mode (2.2) may then be 
written 

k,x = ( M  + C o ~ ~ , ~ , ) k , ~ ,  (2.7) 
where K = x / P 2 ,  and the mode (2.2) becomes 

(2.8) 
e-in~t+imd+i(~+cosB.,)k.SIJm(knF sin a 

nms 3 

where F = r/P. The mode angles a,,, determine not only the field in the duct but also 
the radiated field (Weinstein 1969; Rice, Heidmann & Sofrin 1979; Boyd, Kempton & 
Morfey 1984; Chapman 1994), i.e. the duct cannot ‘hide’ the ray structure of the mode 
from the far field. If the acoustic field is assumed to have the same frequencies in the 
convected and unconvected problems, as is appropriate in wind-tunnel coordinates 
in problems involving rotating sources, then the Doppler-transformed space variables 
are T and F (see Morse & Ingard 1968, p. 722, equations 11.2.9 and 11.2.10). The 
Doppler-transformed polar angle 8 is then defined by tan 8 = F/F = /? tan 8, as was 
used in obtaining (2.5). The transformed variables SZ and F are the Prandtl-Glauert 
coordinates. 

2.4. Loading integrals 
Let the surface of a fan blade inside the duct be defined by the equation x = 
x@)(r, c j  - at) ,  and across this surface let there be a specified pressure jump p(’)(r, c j  - 
SZt,x@)(r,cj - at) , t) .  Then acoustic modes of the form (2.8) will be excited, with 
coefficients proportional to certain integrals containing the pressure jump and the 
gradient of the complex conjugate of the mode. A full analysis is given by Goldstein 
(1976, pp. 195-198), from which the following details may be obtained. The required 
integrals are 

- 
Tnm(~nms) = 2 2.n 12“’ dt‘ 12z dqS la e(~nms)Jm(knF’ sin&,,,,s)pxr’dr’, (2.9) 

a 
Qnm(anms)  = 1 0 r’ 

2n/’ dt‘ dc)‘ la e(g,,,,)J,(k,,F‘ sin&,,,)-p~r’dr’, (2.10) 
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L ( g n m s )  = 1 2rr’* dt’ d4’ la e(g,,,,,,)J;(k,T’ sin~,,,,)p,r’dr’, (2.11) 

where 
e(g nms - - ei(n-m)at‘-im+’-i(M+cosB.,)k,~SJ(r’,$’) (2.12) 

and $’)(r’, 4’) = x(’)(r’, @)/P2 .  The integrals depend on the gradient, in cylindrical 
coordinates, of the complex conjugate of the modes (2.8); this explains the term r’ 
in the denominator in (2.10), and the derivative of the Bessel function in (2.11). The 
quantities p r ,  p+,  p x  are evaluated at (r’, 4’, x(’)(r’, @), t’) and are the loading forces on 
the fluid per projected area in the (r’,+’)-plane; i.e. ( p r , p + , p x )  is a vector defined so 
that the force on the fluid next to a surface element of area dS is ( p r ,  p+ ,  p,)d$, where 
d i  is the projection of dS onto a local (r’, 4’) coordinate plane. Thus p r , p + , p x  are 
determined by p ( s )  and x(’). Similar formulae apply if the surface of the fan blade is 
specified by giving r as function of 4 - Qt and x, or by giving 4 - a t  as a function 
of x and r ;  one of these alternatives would be used if the fan blade had a surface 
parallel to the duct axis, for example if the fan blade were a flat plate aligned with 
the flow. Expression (2.12) contains (n - m)Qt’ rather than nat‘ because the sources 
are specified in rotating coordinates. The symbols Tm,Q,,, and R,,, refer to thrust 
loading, torque loading and radial loading. 

The combination of (2.9)-(2.11) which appears in the modal coefficients is 

and the final expression for the forward-propagating acoustic field in the duct due to 
the loading pressure p(’) on the rotating surface x(’) is 

e-inRt+im~+i(M+cosB,,)k.jZj (k,,F sin 8 
rims L m ( a n m s ) ,  (2.14) m - 

2na2 y i s  cos Onms P=x 
nms 

where y& is a normalization factor defined by 

(2.15) 

In this definition, and in all subsequent formulae, the expression 1 - rn2/#, must 
be replaced by 1 when (m, s) = (0, l), i.e. when jk = 0. Thus y& = 1. The sum is 
over the propagating modes and includes positive and negative n and m; but terms 
with n = 0 are excluded, because they do not correspond to an acoustic part of the 
pressure field. Expression (2.14) gives the acoustic field due to the loading on a single 
fan blade; Goldstein gives some generalizations. 

2.5. The radiation integral 
The simplest method of estimating the sound radiated from the duct face into the 
far field is to use Kirchhoffs approximation, in which the field at the duct face as 
given by (2.14) is used to determine the source strength in a free-space radiation 
integral. Details of the method are given in Weinstein (1969), which also contains 
many comparisons of Kirchhoff and Wiener-Hopf directivity patterns. Calculations 
of the radiation by spinning modes when there is no mean flow are given by Tyler & 
Sofrin (1962, Appendix C) and by Goldstein (1976, pp. 21CL212). The extension to 
non-zero mean flow may be obtained by first applying a Lorentz transformation to 
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the convected wave equation (2.1) to convert it to the ordinary wave equation, and 
then by using Kirchhoff's approximation in the transformed coordinates. The result 
is that each mode (2.8) gives a radiated far field 

- - 
e-inb2t+im~+i(M+cos&,,)k.~ eiMk,?d+ik.& 

. m+l 5 s in~cos~ , , J~ (k ,~ i in~) J , (k ,~s in~ , , , )  
X( - l ) ( - - l )  = 9 (2.16) 

sin2 i? - sin2 g,,, R d  

where ?d = = ($ + F2)lI2. Thus x d  and & are coordinates measured 
from an origin o d  at the centre (d,O,O) of the duct face (see figure I), and E d  = x d / p 2 ;  

note that the two bars on E d  do not indicate division by p2. In obtaining (2.16), the 
observation point is assumed to be in the far field, and the angles 0 and e d  shown in 
figure 1 have therefore been taken to be equal. 

The next stage is to replace the numerator of the fraction in (2.14) by expression 
(2.16). The approximation E d  N - Zcos8 may be used in the phase, and the 
approximation E d  E may be used in the amplitude; the far-field radiation from the 
ducted source is then 

- - 
- a and 

(2.17) 

(2.18) 

- 

-2(sin a) J' (k ,a  sin ~)e-ik"~(COS~-COS8,,,) 
(2.19) 

Here the relation jk = k,a sin G,, has been used to cancel out a term J,(k,a sin g,,,,) 
in the numerator with part of the term y,& in the denominator. When (m,s) = (0, l), 
expression (2.19) becomes 

m 

k,a(l- m2/jEs)Jrn(j;,)(sin2 G - sin2 GnrnS)- dnrns(8) = 

(2.20) 

on using the rule after (2.15) together with the Bessel function identity J(, = -JI and 
the values jbl  = 0, 8,01 = 0. When d = 0, this agrees with the standard formula for the 
sound radiated by a flat circular piston in a plane wall (Morse 1981, p. 328). The func- 
tion fiE)(g), in which the superscript D indicates 'ducted', is the polar directivity func- 
tion for ducted sources. The functions d,,,(i?) will be called the diffraction functions. 

As the distance d from the fan to the duct face is reduced, the non-propagating 
modes become progressively more important in determining the field at the duct face, 
as used in the radiation integral. The sum over s in (2.18) must then be extended to 
include at least some of the non-propagating modes, and in the limit d -+ 0 they must 
all must be included. Then (2.18) is a sum over infinitely many s. The non-propagating 
- modes do not present any analytical difficulty: for these modes, the polar mode angle 
0,,, defined by (2.4) is complex, because j;, > k J ,  and so the value of k ,  defined 
by (2.3) is also complex. Since sin&,,, is still a real number, and cosgnrns is now 
wholly imaginary, the effect on the formulae is to incorporate an exponential decay 
in amplitude between the fan and the duct face, but otherwise to leave the structure 
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of the formulae unchanged. In modern turbofan aeroengines, the large number of 
fan blades and the high subsonic Mach number imply that k,? is large unless d is 
very small; therefore the non-propagating modes may usually be neglected. The few 
modes which only just fail to propagate do not decay appreciably along the duct; 
but such modes affect only the sideline radiation, where Kirchhoff’s approximation 
would not be expected to be very accurate even for the propagating modes. 

Equation (2.17) is one of the main results of the paper. It is written in a form 
which aids comparison with the corresponding radiation pattern from open sources; 
this has guided the choice of source-centred coordinates (R, 8,+, x) rather than face- 
centred coordinates (&, Od, +, xd), and has also determined the notation Lnrn(8,,,) for 
the loading integrals. 

2.6. Radiation from open sources 
The sound radiated by a source in free space may be found by the same method as 
above, but with a continuum of values of the radial wavenumber; this is equivalent 
to taking a Hankel transform in the radial direction. Alternatively, the standard 
results for the sound radiated by rotating sources in a mean flow, as given by Garrick 
& Watkins (1954), Hanson (1983), Schulten (1988), Parry & Crighton (1989), Peake 
& Crighton (1991), for example, may be converted to the coordinate system and 
notation of the present paper. The far field requires a stationary phase calculation. 
The result is that the far-field radiation from an open source of the same strength 
and distribution as specified in $2.4 is given by an expression identical in form to 
(2.17), except that the polar directivity function fLE)(e) for ducted sources is replaced 
by the polar directivity function f;E)(g) for open sources, defined by 

fg’(e) = Lnm(8). (2.21) 

- Here L,,(g) is defined by (2.13) and by the expressions which precede it, but with 
On,, replaced by a. 

2.7. Nil-shielding directions 
The numerator and denominator of expression (2.19) for d,,(8) each have a zero at 
the mode angle a,,,, and l’H6pital’s rule shows that dnmS(~, , , )  = 1. Moreover, when 
dnms(8) is evaluated at the mode angle of a different radial order, i.e. at = 8,,,! for 
s’ # s, the numerator contains J,!,,(jk,,) and so is zero, whereas the denominator is 
now non-zero; hence dn, , (~n,s~)  = 0 for s’ # s. Thus 

dnms(8nms)) = ass!.  (2.22) 

Therefore when fg)(e) is evaluated at a mode angle, (2.18) gives 

f g ’ t g n r n s )  = Lnm(gnms)*  (2.23) 

But by (2.21), the right-hand side of (2.23) is the open-source directivity function 
evaluated at the mode angle em,,. Hence 

f ~ ~ ) ( ~ n m s )  = fh:’Cenms)* (2.24) 

Thus for given frequency and circumferential order, the sound radiated by a ducted 
source at the mode angles is identical in amplitude and phase to the sound radiated 
by the corresponding open source. Hence in these directions the duct has no noise- 
shielding effect, and the directions may be called the nil-shielding directions. 

A physical argument explains the existence of nil-shielding directions. A spinning 
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acoustic mode propagating inside a circular cylindrical duct contains rays forming 
piecewise-linear helices (Chapman 1994, p. 296, figure la). The straight-line segments 
of these piecewise linear helices lie at the polar mode angle to the duct axis, so that, 
for a ducted source, an axial distance d contributes to the far field a phase term 
kn~cos8,,. For an open source, an axial distance d contributes to the far field a 
phase term k,; cos a; this follows from figure 1 by applying a Doppler transformation 
to the triangle OOdP and then resolving the line OOd in the direction O P .  Hence 
in the far-field direction a,,,, these phase terms for the ducted and open sources are 
equal. On using the approximation & 2: R everywhere except in the phase, it then 
follows from the Kirchhoff radiation integrals that in the far-field direction the 
- ducted-source radiation and open-source radiation are equal, i.e. that the direction 
On, is a nil-shielding direction. This argument suggests that the diffraction effect of 
the duct is produced not so much by the front part of the duct of length d,  in which 
the field is rather similar to a field in free space, but more by the semi-infinite rear 
part of the duct. The physical argument illustrates the power of using mode angles 
to describe the duct modes - a power noted by Rice et al. (1979). 

A consequence of the work of Weinstein (1969, pp. 104-107) is that the Kirchhoff 
expression (2.16) for the field radiated by the mode with parameters n,m,s agrees 
exactly with the Wiener-Hopf solution at the angles 8 = for all d .  Therefore 
the nil-shielding results are exact properties of the linear solution of the radiation 
problem. In particular, the directivity function fAi)(a) agrees with the Wiener-Hopf 
directivity function at the angles 8 = a,,, for all s, and the nil-shielding directions 
found here are exact on linear theory. But the source strengths are assumed to be 
given; therefore the effect of reflections from the duct face in modifying the source 
strength, possibly leading to resonance, is assumed to be already incorporated in the 
specification of the source distribution and strength. 

The existence of nil-shielding directions is strikingly confirmed by a set of graphs in 
Myers & Lan (1993) obtained by numerical computation on a CRAY. For example, 
their figure 10 consists of superimposed polar directivity plots for different distances 
between a thrust-loading source and the front face of the duct. The parameter values 
are n = 20, m = 20, M = 0.8, M ,  = 0.9. Therefore two radial orders give propagating 
modes, and (2.4)-(2.6) above give t120,2,~ = 61" and O20,2,2 = 76". Myers & Lan use the 
supplements of these angles, so that the curves in their figure 10 would be expected 
to cross at polar angles of 119" and 104". Inspection of the curves reveals that they 
do cross at these polar angles. Figure 11 consists of the corresponding curves for a 
torque-loading source, and these curves, too, cross at polar angles of 119" and 104". 
Figures 8 and 9 are similar, but for M ,  = 0.7. For this value of M,, only one radial 
order gives a propagating mode, and (2.4)-(2.6) give Om,20,1 = 79", the supplement of 
which is 101". In the figures, the curves cross at this polar angle. In figure 12, for 
n = 40,m = 40,M = 0.8,M, = 0.9, the agreement is not quite so good: four modes 
propagate, and the crossings are typically about 3" away from their calculated values. 
This could be because at such a high frequency the radial location chosen was not 
far enough away from the duct face to be in the far field. 

- 

- - 

3. The open-to-ducted transfer function 
Substitution of (2.21) into (2.18) gives 



Sound radiation from a cylindrical duct. Part 2. 377 

In this relation the acoustic sources do not enter into the diffraction functions dnms(e). 
Therefore the sound radiated in all directions by ducted sources is determined by the 
sound radiated in the nil-shielding directions 8,,,, by the corresponding open sources, 
i.e. by the terms fii)(&Es); these terms are coefficients multiplying the ‘universal’ 
functions of angle d,,,(O) given by (2.19). Relation (3.1) therefore determines an 
open-to-ducted transfer function. Since the functions dnm,(8) are easily calculated, and 
only finitely many nil-shielding directions exist for given n and m, the relation is easy 
to use. Note that the orthogonality relation (2.22) recovers from (3.1) the result (2.24) 
that fg)(8) = fLi)(8) when 8 = fl,,,,. 

For given n and rn, if only one radial order gives a propagating mode then the 
sum over s, i.e. over the nil-shielding directions, reduces to the single term s = 1. 
Then fLI)(e) is proportional to dflml(8),  which is a function unrelated to open-source 
directivity patterns. Thus in this case the far-field of the ducted source does not 
‘see’ the corresponding open-source directivity pattern, but only the function dnml (a) 
- with a coefficient determined by the open-source directivity in the single direction 
tlnml. But if many radial orders give propagating modes for a given n and m, 
then many nil-shielding directions appear in the sum (3.1), and for each of these 
directions the open-source and ducted-source far fields are equal. Therefore in this 
case the open-source directivity pattern is strongly felt, despite the presence of the 
duct: the difference between the two patterns is a wiggle. Thus the effect of placing 
a duct around a source depends largely on the number of radial orders which give 
propagating modes. Since the number of propagating modes increases with frequency, 
one conclusion is that at high frequencies a hard-walled duct does not have a profound 
influence on the directivity pattern of a source. This is not unexpected. For example, 
an analysis based on edge waves (Weinstein 1969, pp. 177-185) or on Keller cones 
(Chapman 1994) suggests that the rim of the end face of the duct, when irradiated by 
a high-frequency duct mode, acts as ring source, and that such a ring source radiates 
rather like an open source. 

The relation (3.1) may be written 

J o  
where 

T n m ( 8 ,  8’) = C dnms(8)6(8’ - 8 n m s ) .  (3.3) 
S 

Thus Tflm(e, e’) is the open-to-ducted transfer function determined by the relation 
(3.1). 

4. The diffraction functions 
Expression (2.19) may be written 

where 

and 
j = k,ii sin 8 
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FIGURE 2. The diffraction function 24,,(j). 
j 

By (2.20), this expression becomes Zol(j) = 2Jl(j)/j when (m,s)  = (0,l); the small- 
- argument limit of the Bessel function then gives &(O) = 1. The functions d,,,(@ and 
d, ( j )  differ only in phase, and for convenience they will both be called diffraction 
functions. Note that &,(j) depends implicitly on n, because by (4.2) the argument 
j is restricted to the range 0 < j d k,a; thus j = k,a corresponds to 8 = n/2. The 
orthogonality relation (2.22) for d,,,(a) implies that 

- 
~ r n s c j ; , )  = J S f .  (4.4) 

- 
The maximum value of &, is close to, but not exactly at, the point j = j;,, d ,  = 1. 

A typical diffraction function is plotted in figure 2, which shows a graph of & 4 ( j )  

for 0 d j d 30. The peak is close to j = j;,4 = 15.964, and the zeros are at 
j = jil = 5.318,j = j;,* = 9.282,. .., i.e. at j = j;,, for s # 4. Recall that the relevant 
part of the curve depends on several parameters, including n and M ,  because the 
range 0 d a d n/2 corresponds to 0 < j d k,a. 

The diffraction functions &( j )  for 0 < j d 30 are superposed in figure 3. Since 
ji,8 = 28.768 and ji,9 = 31.939, the values of s which correspond to the propagating 
modes are s = 1,2, ..., 8, and the figure contains the diffraction functions for just 
these s. The figure makes evident the interlacing property of the curves: at the modal 
value j = jiJ, of a curve & J j ) ,  each of the other curves has a zero; i.e. d4,,(j:,,,) = 0 
for s # s’. This is simply the orthogonality property (4.4). A similar set of interlacing 
curves, but for non-spinning modes (i.e. m = 0) is given in Morse (1981, p. 331, 
figure 71). The sum of the diffraction functions, i.e. zs&Jj), is shown in figure 3 as 
a dashed curve; this curve passes through the points (&, 1)  for s = 1, .  . . , 8 ,  and may 
be regarded as a wiggle about a horizontal line at height 1. If the phases indicated 
in (4.1) are applied to z4,, before summing, the curve still passes through the points 
(j:,,,l), but the wiggle has a different shape. In the open-to-ducted relation (3.1), 
the diffraction functions are multiplied by coefficients obtained from the open-source 
directivity curve; the resulting ducted-source directivity curve then passes through 
the open-source directivity curve at the polar angles corresponding to ji,,, i.e. at the 
nil-shielding angles, and the two directivity curves interlace. 

- 
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FIGURE 3. The diffraction functions &Jj)  for s = 1,2,. . . ,8. Their sum is shown as a dashed curve. 

5. Conclusion 
The results above show that, in at least one problem of aeroengine acoustics, an 

open-to-ducted transfer function exists and can be calculated. The advantage of the 
transfer function approach is that a transfer function can be ‘bolted-on’ to existing 
computer codes which model the sound radiation from open rotors. It would be 
of interest to include in the transfer function the effects of the bell-mouth inlet, the 
impedance of the duct lining, and the shear in the mean flow; to obtain a realistic 
prediction scheme, at least some of these effects would need to be included. In 
modelling these effects, ray theory is likely to play a part (Lighthill 1972; Cargill 
1987; Chapman 1994). Also of interest would be further theoretical analysis of 
the radiation pattern, using the Wiener-Hopf technique ; for example, the radiation 
properties of duct modes may be determined exactly on linear theory, both for 
propagating and for non-propagating modes, and the exact linear results would make 
possible a calculation of the sideline and rear-arc radiation. The results of such a 
calculation would be particularly useful for a fan which is very close to the duct face. 

Other effects will complicate the simple picture based on nil-shielding directions 
and on the open-to-ducted transfer function. Superposition of the sound radiated 
from the front and rear of an aeroengine, and from all the other noise sources on an 
aircraft, clearly cannot be described by a single formula; but the results of this paper 
provide a simple description of the sound field produced by one important source of 
noise. 

This work has been carried out with the support of DTI (CARAD) through the 
Defence Research Agency, Pyestock. The author is grateful to A.B. Parry, S.J. Perkins 
and other members of the aeroacoustics group at Rolls-Royce, Derby, for their 
comments and assistance at all stages of the project. 
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